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Representative design refers to the idea that experimental stimuli should be sampled or de-
signed such that they represent the environments to which measured constructs are supposed to
generalize. In this article we investigate the role of representative design in achieving valid and
reliable psychological assessments, by focusing on a widely used behavioral measure of risk
taking—the Balloon Analogue Risk Task (BART). Specifically, we demonstrate that the typi-
cal implementation of this task violates the principle of representative design, thus conflicting
with the expectations people likely form from real balloons. This observation may provide an
explanation for the previously observed limitations in some of the BART’s psychometric prop-
erties (e.g., convergent validity with other measures of risk taking). To experimentally test the
effects of improved representative designs, we conducted two extensive empirical studies (N =
772 and N = 632), finding that participants acquired more accurate beliefs about the optimal
behavior in the BART due to these task adaptions. Yet, improving the task’s representativeness
proved to be insufficient to enhance the BART’s psychometric properties. It follows that for
the development of valid behavioral measurement instruments—as are needed, for instance,
in functional neuroimaging studies—our field has to overcome the philosophy of the “repair
program” (i.e., fixing existing tasks). Instead, we suggest that the development of valid task
designs requires novel ecological assessments, aimed at identifying those real-life behaviors
and associated psychological processes that lab tasks are supposed to capture and generalize
to.
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Various psychological assessments are routinely per-
formed by means of behavioral tasks, including the measure-
ment and modeling of individual differences in risk taking
(Frey et al., 2017, 2020; Lauriola et al., 2014; Lejuez, Ak-
lin, Jones, et al., 2003; Mishra & Lalumière, 2011; Tisdall
et al., 2020). Although such task-based assessments of re-
vealed preferences have been considered the gold standard
in some fields of psychology and economics (e.g., Beshears
et al., 2008; Charness et al., 2013), recent evidence has high-
lighted substantial psychometric limitations of this measure-
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ment approach (e.g., Beauchamp et al., 2017; Berg et al.,
2005; Eisenberg et al., 2019; Frey et al., 2017; Lönnqvist
et al., 2015; Millroth et al., 2020). Valid and reliable alterna-
tives do exist in the form of self-report measures (e.g., Arslan
et al., 2020; Frey et al., 2017; Steiner et al., in Press), yet
behavioral tasks may continue to be indispensable for cer-
tain applications, such as in research on the functional neural
architecture of risk taking, which typically rests on the sim-
ulation of risk-taking behaviors in the fMRI scanner (e.g.,
Helfinstein et al., 2014; Li et al., 2019; Rao et al., 2008;
Schonberg et al., 2011; Tisdall et al., 2020). Moreover, in-
corporating both revealed and stated preferences in a mul-
timethod approach may prove beneficial for understanding
and predicting real-life behavior (e.g., Lejuez et al., 2002;
Sharma et al., 2014; Wallsten et al., 2005).

In this article, we build on an argument originally put forth
by Brunswik and examine the role of representative design
(Brunswik, 1956; Gibson, 1986; Hammond, 1966; Stoffre-
gen et al., 2003; for an overview see Araújo et al., 2007
and Dhami et al., 2004) in behavioral measures of risk tak-
ing. Representative design (not to be confused with ecolog-
ical validity; Araújo et al., 2007) refers to the idea that ex-
perimental stimuli should be sampled or designed such that
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they adequately represent the environments to which mea-
sured constructs are supposed to generalize, and that “exper-
imenters should avoid oversampling highly improbable [...]
variables in the intended behavioral setting” (Araújo et al.,
2007, p. 73). Specifically, we argue that violations of rep-
resentative design may contribute to the poor psychometric
properties of behavioral risk-taking measures as have been
observed in previous research, such as low convergent va-
lidity or low test–retest reliability (Beauchamp et al., 2017;
Berg et al., 2005; Eisenberg et al., 2019; Frey et al., 2017;
Lönnqvist et al., 2015; Mata et al., 2018; Slovic, 1962)—and
thus ultimately hamper a successful assessment of meaning-
ful individual differences. This article illustrates this argu-
ment, and systematically examines the potential benefits of
using improved representative designs, by focusing on the
Balloon Analogue Risk Task (BART).

The BART: A Prominent Behavioral Measure of Risk
Taking

The BART is one of the most prominent behavioral mea-
sures used to gauge individual differences in risk taking, of-
ten employed in behavioral decision research (e.g., Lauri-
ola et al., 2014; Lejuez et al., 2002; Wallsten et al., 2005),
in clinical settings (e.g., Bornovalova et al., 2005; Hopko
et al., 2006; Hunt et al., 2005), as well as in applied con-
texts (e.g., Aklin et al., 2005; Lejuez, Aklin, Zvolensky, &
Pedulla, 2003). For instance, the BART has been used to pre-
dict interindividual differences in substance use (e.g., Camp-
bell et al., 2013; Hanson et al., 2014; Hopko et al., 2006;
Lejuez, Aklin, Jones, et al., 2003), to study the neural ar-
chitecture of risk-taking behaviors in imaging studies (e.g.,
Helfinstein et al., 2014; Li et al., 2019; Rao et al., 2008; Tis-
dall et al., 2020), and to examine the genetic underpinnings
thereof (Mata et al., 2012).

When completing the BART, participants sequentially in-
flate virtual balloons (typically 30) on a computer screen,
earning a fixed amount of money for each successful infla-
tion. If a balloon explodes, the money accrued in the current
trial is lost. Participants are free to stop inflating a balloon at
any time, to thus transfer their current gain to a safe account.
At the onset of the task, participants are only told the amount
of money they will earn for each successful inflation, that
they will lose the money accrued in the current trial if the
balloon bursts, as well as that at most the balloons can get as
large as the whole screen. As such, participants initially face
a situation of decisions under uncertainty (see Knight, 1921;
Mousavi & Gigerenzer, 2014), because the risk of an ex-
plosion at different inflation stages remains unknown. With
increasing experience, the task gradually transforms into a
situation of decisions under risk (Knight, 1921; Mousavi &
Gigerenzer, 2014), as the explosion probabilities can in prin-
ciple be learned—at least approximatively.

The BART is attractive as it resembles many real-life de-

cision problems in at least three key aspects: On the one
hand, it mirrors the fact that in many risky situations not
all stochastic properties are known a priori but have to be
learned through experience (e.g., Frey, 2020; Frey et al.,
2015; Hertwig et al., 2004). On the other hand, the sequential
nature of the BART creates a “sense of escalating tension and
exhilaration” (Schonberg et al., 2011, p. 16), mimicking the
thrill that individuals may feel in many risk-taking decisions
in real life (e.g., whether to stay invested in stocks before
a looming stock market crash). Moreover, risk and reward
are correlated in the BART, as they are in many real-life de-
cisions involving risk and uncertainty (Pleskac & Hertwig,
2014; Pleskac et al., 2020).

In light of these attractive features, it may be somewhat
surprising that several studies documented a relatively low
convergent validity of the BART with measures tapping var-
ious constructs related to risk taking. For instance, one study
found a maximum correlation of r = .16 between the BART
and any of 38 multi-dimensional risk-taking measures, span-
ning indicators of domain-general and domain-specific risk
preference, sensation seeking, impulsivity, and concrete real-
life behaviors, as well as comprising different assessment
methods (i.e., self-reported propensity measures, behavioral
measures, and frequency measures; Frey et al., 2017). Alike,
meta-analyses on the BART’s convergent validity reported
similarly low correlations (i.e., r = .14 for sensation seek-
ing, and r = .10 for impulsivity; Duckworth & Kern, 2011;
Lauriola et al., 2014). Moreover, although multiple studies
found associations of the BART with real-life behaviors (e.g.,
Aklin et al., 2005; Lejuez, Aklin, Jones, et al., 2003; Lejuez
et al., 2007; Skeel et al., 2008), this has not consistently been
the case (e.g., Frey et al., 2017; Hopko et al., 2006; Hunt
et al., 2005; Lauriola et al., 2014; Schürmann et al., 2018)—
and to date no meta-analysis exists yet to conclusively clarify
this issue. Finally, although the BART exhibits a high test–
retest reliability, especially in comparison with other behav-
ioral tasks (Frey et al., 2017; White et al., 2008), it is some-
what lower as compared to respective self-report measures
(e.g.; Frey et al., 2017; Mata et al., 2018). The question thus
arises: What obstacles hinder the BART from capturing indi-
vidual differences in risk taking more consistently, and how
could such limitations potentially be fixed?

Challenges in the BART’s task design

Previous research concerning the BART’s task design has
mainly revolved around two potential issues. First, it has
been argued that learning may be difficult due to the asym-
metric feedback provided (Pleskac et al., 2008). Remov-
ing learning requirements (i.e., either by informing partici-
pants upfront about the optimal number of inflations; or by
implementing a related task that retains the BART’s basic
structure yet has no learning demands) resulted in similar
and partly stronger associations with some real-life behav-
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iors (i.e., polydrug use; Pleskac, 2008; Pleskac et al., 2008).
That is, whether or not the BART’s learning requirement is
ultimately a useful property may also depend on the particu-
lar real-life behaviors that are to be predicted (e.g., the extent
to which these are decisions under uncertainty that involve a
learning component).

Second, there has been a debate concerning people’s rep-
resentations of explosion probabilities in the BART: Early
work relying on cognitive modeling concluded that partic-
ipants may form an incorrect representation of the task’s
stochastic structure by assuming that explosion probabili-
ties remain stationary across the sequential inflation process
(Pleskac, 2008; Wallsten et al., 2005). However, more re-
cent research, which has directly prompted participants to
rate the probability that a balloon explodes at different in-
flation stages, has challenged this conclusion: According to
participants’ explicit ratings, they indeed expected a strong
increase in the explosion probabilities during the sequential
inflation process (Schürmann et al., 2018).

Here we would like to draw attention to yet another and
independent, but potentially very fundamental issue in the
BART’s task design. Specifically, in order to trigger a
sense of increasing tension during the sequential inflation
process—as outlined above, an attractive feature that mimics
many real-life situations—the conditional probability that a
balloon explodes at inflation i (i.e., given that it has not ex-
ploded in the preceding i − 1 inflations; see the escalating
purple curve in Figure 1a) is defined as

p(expli|¬expli−1) = 1/(C − i + 1) (1)

where C denotes the maximum capacity of the balloons, for
example C = 128 (Lejuez et al., 2002).1 Importantly, and
as can be seen from the flat purple curve in Figure 1b, this
stochastic structure results in a uniform distribution of ex-
plosion points. That is, when inflating all balloons to their
explosion points, in the long run there will be the same
number of explosions at every possible inflation stage (i.e.,
p(expli) = 1/C for all inflation stages i ∈ {1, 2, . . . ,C}).

Evidently, the typical implementation of the BART—
hereinafter referred to as the BARTuniform—is in stark con-
trast to the stochastic structure to be expected from real bal-
loons: Balloons of the same type can be expected to burst
around one specific inflation stage, thus resulting in a dis-
tribution of explosions with a central tendency. To put this
assumption to a simple test, we inflated 100 real balloons
until they exploded, using a regular bicycle pump, and keep-
ing record of the number of inflations. As to be expected,
the resulting distribution of explosions (Figure 2) was much
more aligned with a normal rather than a uniform distribu-
tion.2 Hence, what are the potential consequences if repre-
sentative design is violated in a behavioral task such as the
BART?

Second, over-learning one’s prior expectations may be es-

pecially challenging in the case of the BARTuniform because
participants experience highly variable feedback—precisely
due to the uniform distribution of explosions, which yields
very early as well as very late explosions with the same like-
lihood. Furthermore, the highly variable explosion points
may also lead to problematic order effects: Previous research
has found a systematic influence of whether participants ex-
perience early or late explosions during the initial trials—
requiring the order of explosions to be fixed across partici-
pants (Schürmann et al., 2018; Walasek et al., 2014). Thus,
this second issue likely aggravates the consequences of the
first issue.

Three issues associated with the lack of representative de-
sign in the BART

To date, the degree of representative design and its respec-
tive effects remain rarely tested for specific tasks, particularly
in the context of psychological assessment. Although some
studies have found mixed evidence concerning whether rep-
resentative design and systematic design (i.e., the attempt to
systematically design stimuli to be able to have maximal con-
trol over experimental manipulations) generally lead to sub-
stantially different effects (Dhami et al., 2004), in the case of
the BART one can conceive of at least three major issues.

First, and particularly in a “naturalistic” task such as the
BART, participants do not start off as tabula rasa but with
some prior beliefs (see also, Pleskac, 2008; Wallsten et al.,
2005): Virtually everyone has inflated real balloons and ac-
quired the expectation that explosions do not occur in an en-
tirely unpredictable way—as is the case in the BARTuniform.
Thus, in the process of turning this task from a situation
of decisions under uncertainty into one of decisions under
risk, participants may aim to learn (implicitly or explicitly)
about several statistical properties, such as: “Around which
value do most of the balloons explode?” In fact, due to the
linear reward structure the expected payoffs are maximized
when inflating all balloons to half of the maximum capacity
(Figure 1d); and as this reward structure is transparent (i.e.,
participants know upfront that payoffs increase linearly with
each inflation; Lejuez et al., 2002), the goal of maximizing
payoffs reduces entirely to learning about the (mean of the)
distribution of explosion points. Hence, the respective need
to over-learn one’s prior expectations about the functional
form of the distribution of explosions may introduce unde-
sirable noise in the BARTuniform, and may thus lead to dis-
torted task representations—which could limit not only the
task’s test–retest reliability but also its convergent validity
with related measures of risk taking.

1If only one type of balloon is employed in an experiment, all
balloons have, in principle, the same maximum capacity.

2Note that this distribution had somewhat fat tails and some de-
gree of skewness, both of which may be related to the relatively
small sample size of this brief experiment.
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Figure 1

Illustration of four different task designs, each implementing a different stochastic structure in the BART. Colors/shapes indi-
cate different distributions of explosion points, with purple/squared dots depicting the standard implementation of the BART
(i.e., uniform distribution) and the other colors/shapes depicting more representative designs thereof (i.e., normal distribu-
tions). Panel a) shows the conditional explosion probabilities. Panel b) shows the probability masses of the explosion points.
Panel c) shows the cumulative explosion probabilities. Panel d) shows the expected payoffs across inflation stages, and the
colored ticks on the x-axis show the stage that maximizes the expected value, namely, 32, 28, 25, and 25 when explosion points
are distributed as U(1, 64) as in the BARTuniform, N(32, 18) as in the BARTnormal-H, N(32, 12) as in the BARTnormal-M, and
N(32, 6) as in the BARTnormal-L.

Third, the payoff-maximizing behavior in the BARTuniform
consists of inflating the balloons up to the mean breaking
point. Yet, around the mean breaking point there is no
specific signal a participant could detect and exploit across
trials—unlike in a distribution with a central tendency of
explosion points (e.g., a normal distribution), where par-
ticipants would spontaneously observe that relatively more
balloons explode around a specific inflation stage. Thus,
in order to adopt the objectively optimal behavior in the
BARTuniform, participants have to obtain an estimate of C,
as the mean of a uniform distribution (with a lower bound of
0) is defined as µ = C

2 . An estimate of C may be obtained
through sequential updating of one’s prior assumption of the
balloons’ maximum capacity (Wallsten et al., 2005), but this
process is difficult due to the relatively few trials typically
completed in the BART, as well as due to the asymmetric
feedback provided. As a result, unless participants commit
to a large number of purely exploratory trials, their estimates
of C may be systematically biased downwards simply due
to the particular task structure (Pleskac et al., 2008). Con-

sequently, even individuals who differ in their willingness to
take risks may show very similar behaviors, which may lead
to attenuated correlations with other measures of risk taking.

Taken together, these three issues may provide explana-
tions for the reviewed limitations in the BART’s psychome-
tric properties. Thus, in what follows we will first report a
reanalysis of five datasets, aimed at exploring the empirical
evidence concerning whether participants’ prior expectations
indeed diverge from the distribution of explosion points as
implemented in the BARTuniform. Then, we will report two
empirical studies that systematically tested whether an im-
proved representative design in the BART leads to an en-
hanced assessment of individual differences, which (a) may
increase the convergent validity of the BART with measures
of various constructs related to risk taking and (b) potentially
boosts the BART’s test–retest reliability.
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Figure 2

Distributions of explosion points of 100 real balloons, inflated with a bicycle pump.

Reanalysis of Five Datasets: People’s Representations of
the BART’s Stochastic Structure

To explore people’s expectations and representations con-
cerning the stochastic structure of the BART, we first re-
port a reanalysis of a number of datasets that comprise ex-
plicit judgments of explosion probabilities. Specifically, our
reanalysis involves five datasets stemming from three stud-
ies: Frey et al., 2017 collected data from 1507 participants,
Schürmann et al., 2018 collected data from 100 participants
in study 1 and from 90 participants in study 2, and Steiner
and Frey (2020) collected data from 31 participants.3 At
the end of each of these studies (i.e., after having com-
pleted all 30 trials of the BART), participants were shown
balloons inflated to different stages and were asked: “What
do you think is the probability that the balloon will explode
with one additional pump, given it is already inflated at this
size?” (Schürmann et al., 2018, p. 4). Participants then pro-
vided their probability rating on a scale from 0% to 100%.
In study 2 of Schürmann et al., 2018, participants provided
these probability ratings twice, once after the first trial—thus
also permitting some insights concerning participants’ prior
expectations—and once at the end of the task.

Schürmann et al., 2018 fitted psychometric functions to
participants’ ratings and visual inspection of the results (their
Figures 3 and 5) suggests two conclusions: First, participants
might generally have reported their beliefs that a balloon can
be inflated up to different stages (i.e., cumulative probabili-
ties; see the curves depicted in Figure 1c) rather than their be-
liefs that a balloon will explode at the next stage (i.e., condi-
tional probabilities; see the curves depicted in Figure 1a; for
similar findings, see Haffke & Hübner, 2019). Second and
more importantly from the perspective of representative de-

sign, the shapes of the fitted psychometric functions suggest
that participants may indeed have acquired the representa-
tion that the explosion points are normally and not uniformly
distributed: In the case of a uniform distribution, cumulative
probabilities would result in a linear function, whereas in the
case of a normal distribution cumulative probabilities would
result in a sigmoid function (see Figure 1c). The results of
Schürmann et al., 2018 appear to be in line with the latter.

Method

To formally test these hypotheses, we fitted cumulative
density functions (CDF) and conditional probability func-
tions (CPF) of both a normal distribution and a uniform dis-
tribution to participants’ probability ratings, and examined
which function best described the data according to the least-
squares criterion. For the two CDFs, we estimated two free
parameters (i.e., mean and standard deviation in the case of
the normal distribution, and the lower and upper bound in
the case of the uniform distribution). For the two CPFs, we
estimated two free parameters in the case of the normal dis-
tribution (i.e., the mean and standard deviation), and one free
parameter in the case of the uniform distribution (i.e., the
lower bound). Both CPFs used the maximum balloon capac-
ity C as fixed upper bound, which was 128 in Schürmann
et al., 2018 and in Frey et al., 2017, and 64 in Steiner and
Frey, 2020.

Results

Figure 3 depicts the results of our reanalysis. In all
datasets, the ratings of most participants were best described

3This dataset stems from a pilot study of a manuscript in prepa-
ration, see https://osf.io/kxp8t for the respective data and materials.

https://osf.io/kxp8t
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Figure 3

Reanalysis of the data from probability rating tasks. Panel a) shows the result of the reanalysis of study 1 from Schürmann
et al., 2018. Panels b) and c) show the results of the reanalysis of study 2 from Schürmann et al., 2018 after participants
have played one trial, and all 30 trials, respectively. Panel d) shows the results of the reanalysis of the data from Frey et al.,
2017. Finally, panel e) shows the results of the reanalysis of the data from Steiner and Frey, 2020. Points represent the actual
probability ratings. Lines are the predictions made by the models that best represent the respective participants. The line and
point colors indicate the best fitting model. CDF = Cumulative density function. CPF = Conditional probability function.

by normal distributions. Specifically, the ratings of 84%,
71% and 71% of the participants in the different datasets
from Schürmann et al., 2018, and 84% of the participants
from Steiner and Frey, 2020, were best described by CDFs
of normal distributions (i.e., the ratings of no participant were
best described by a CPF). In the dataset of Frey et al., 2017
the ratings of 76% of participants were best described by a
normal distribution (43% of participants by CDFs of normal
distributions, and 33% of participants by CPFs of normal dis-
tributions). The ratings of the remaining 24% of participants
were best described by a CDF of a uniform distribution (for
a potential explanation of the somewhat different pattern in
the latter dataset, see online Supplemental Material Section
1).

Discussion

Our reanalysis of five datasets consistently indicated that
participants clearly exhibit a task representation that conflicts
with the distribution of explosion points implemented in the
BARTuniform: Most participants expected a normal distribu-

tion of explosion points—evidently the state of affairs in the
real world (see Figure 2)—both in the beginning of the task
(as assessed in Schürmann et al., 2018), and even after 30 tri-
als of learning opportunity (as assessed in all four datasets).

Study 1: Does a More Representative Design Boost the
BART’s Convergent Validity With Other Measures of

Risk Taking?

The goal of study 1 was to empirically test whether en-
hancing representative design in the BART improves the
task’s psychometric properties, thus permitting an improved
assessment of participants’ willingness to take risks. There
exist multiple ways of implementing representative design:
According to the definition of Hammond (1966) our brief test
of how the explosions of real balloons are distributed (Fig-
ure 2) falls into the category of substantive sampling. Specif-
ically, we have sampled real stimuli from the model behavior
the experimental task was abstracted from. Naturally, such a
direct implementation of representative design—which mir-
rors Brunswik’s initial conception (Brunswik, 1956; see also

https://doi.org/10.1037/xge0001036.supp
https://doi.org/10.1037/xge0001036.supp
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Dhami et al., 2004)—is not feasible or even desired in most
assessment contexts (e.g., in online research). There is, how-
ever, another form of implementing representative design:
formal sampling. It implies that formal, statistical proper-
ties of a judgment task are considered in the experimental
design (Hammond, 1966). We followed this logic in study 1
by implementing the BART with (different types of) normal
distributions of explosion points (i.e., BARTnormal). We ex-
pected this change in the task architecture to lead to several
improvements:

First, because explosion points are clustered in the
BARTnormal, participants experience more consistent feed-
back across trials. This should facilitate the acquisition of
an appropriate task representation, particularly if participants
expect (and thus aim to identify) such a clustering. More-
over, the more consistent feedback as compared to in the
BARTuniform should in principle avoid the problem of system-
atic order effects in learning, potentially rendering the use of
a fixed order of explosion points obsolete.

Second, unlike in the BARTuniform, in the case of a normal
distribution there is no longer a need for an accurate estimate
of the balloons’ maximum capacity C to gauge the objec-
tively optimal behavior. Instead, as an approximation of the
number of inflations that maximizes payoffs, one can directly
learn about the average explosion point (Figure 1d). This
may be a more natural process, as learning about the mean of
the balloons’ explosion points can occur directly due to a no-
ticeable increase in the the number of balloons that explode
around a specific inflation stage. Although the asymmetric
feedback in the BART may still lead to an underestimation of
the number of inflations that maximizes payoffs, this should
occur substantially less so than in the BARTuniform.

Third, we expected that these improvements would ulti-
mately lead to an improved assessment of individual differ-
ences: On the one hand and as can be seen in Figure 1a,
the conditional probabilities of an explosion may still cre-
ate a desirable sense of escalating tension and exhilaration in
the BARTnormal. On the other hand, participants’ overt risk-
taking behavior may be a more direct expression of their will-
ingness to take risks, due to reduced interindividual differ-
ences in participants’ task representations. Hence, the con-
vergent validity between the adjusted BART scores and other
measures of risk taking should increase.

In our comparison of the BARTnormal with the
BARTuniform, we implemented three different normal
distributions that had the same means but varied in terms
of their standard deviation (i.e., we sampled a range
of plausible learning environments for the BARTnormal).
Narrower distributions should lead to a reduced variability
in participants’ task representations. Yet, in the extreme
case, a too narrow distribution may result in a trivial task,
thus failing to capture any meaningful individual differences
in risk taking. The distributions all had the same mean of

32, as in our implementation of the BARTuniform (which
had a maximum capacity of 64). Moreover, the standard
deviation of the widest normal distribution was explicitly
chosen to match the standard deviation of the BARTuniform.
To summarize, in study 1 we tested the following four
hypotheses:

Hypothesis 1: General task representation: At
the end of the task, participants believe that the
explosion points cluster around a mean value
rather than being uniformly distributed, irre-
spective of the actual distributional form im-
plemented (i.e., BARTuniform vs. BARTnormal).
Moreover, within the BARTnormal, we expected
this belief to be increasingly stronger, the
smaller the standard deviations of the distribu-
tions become.

Hypothesis 2: Beliefs about optimal behav-
ior: At the end of the task, participants’ beliefs
about the inflation stage that maximizes their
payoffs exhibit less variability between partic-
ipants in the BARTnormal as opposed to in the
BARTuniform. Moreover, we expected these be-
liefs to be closer to the value that actually max-
imizes payoffs in the former as compared to in
the latter.

Hypothesis 3: Overt risk-taking behavior: On
average, participants’ adjusted BART scores are
closer to the optimal value and exhibit less vari-
ability between participants in the BARTnormal
than in the BARTuniform. Within the BARTnormal,
we expected that the adjusted BART scores are
increasingly closer to the optimal value and ex-
hibit less variability, the smaller the standard de-
viations of the distributions become.

Hypothesis 4: Convergent validity: As the
distribution of adjusted BART scores in the
BARTnormal potentially reflects individual differ-
ences in participants’ willingness to take risks
more directly, we expected a higher convergent
validity between adjusted BART scores and var-
ious other measures of risk taking (i.e., propen-
sity and frequency measures) in the BARTnormal
as compared to in the BARTuniform.

Methods

Both empirical studies of this article were preregistered on
the Open Science Framework. The preregistration, data files,
and analysis scripts can be accessed via https://osf.io/kxp8t.
Both empirical studies were approved by the local institu-
tional review board (Number 020-19-1).

https://osf.io/kxp8t
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Participants and sample characteristics

Based on an a priori power analysis (see preregistration)
we collected data of 800 participants on Amazon Mechanical
Turk (MTurk). We imposed the following inclusion criteria:
based in the United States, at least 18 years old, at least 500
completed tasks (HITs) on MTurk, and an acceptance rate
of at least 99%. Moreover, only data were included of par-
ticipants who passed at least one out of two attention check
questions (see preregistration), who provided a rating of at
least 25 on a scale from 0 to 100 concerning how focused
they were during the study, and who confirmed to have com-
pleted the study on a desktop computer or a laptop. Of these
800 participants, the data of 28 contained missing values and
we used list-wise deletion of these data, resulting in a final
dataset consisting of data from 772 participants (47.8% fe-
male; Mage = 38.0, S Dage = 11.1; highest completed degree:
0.8% no high school, 37.1% high school, 40.3% bachelor,
10.1% master, 10.5% professional, 1.3% doctor; job status:
3.5% student, 11.0% unemployed, 82.5% working, 3.0% re-
tired). On average, study completion took 13 minutes. Par-
ticipants were reimbursed with a fixed payment of 10 cents
and a performance contingent bonus payment, resulting in an
average reimbursement of 4.36 USD.4

Materials and procedure

The whole study was conducted online on participants’
own devices. After providing informed consent, partici-
pants completed the BART in one of four randomly assigned
between-subjects conditions (see next paragraph). Upon
completion of the BART, participants provided their beliefs
about (a) the form of the underlying distribution (clustered
explosion points vs. uniformly distributed explosion points;
using a slider ranging from 0 to 50)—a procedure that we
slightly revised and reimplemented in study 2—and (b) the
optimal behavior in the BART (in randomized order). Then,
participants completed (in a randomized order) the General
Risk Propensity Scale (GRiPS; Zhang et al., 2018), the gen-
eral and domain-specific risk items used in the German So-
cioeconomic Panel (SOEP; e.g., Dohmen et al., 2011, i.e.,
propensity measures in which participants self-report their
risk preferences), and an assessment of real-life risk-taking
behavior in different domains (i.e., frequency measures, in
which participants report the frequency with which they en-
gaged in different risky behaviors within the last year). Fi-
nally, participants reported their age, sex, job status, and
highest education; how focused they were during the study,
and the device they used to complete the study; and were
given the possibility to provide free-text feedback. Screen-
shots of the study are provided at https://osf.io/kxp8t.

BART. Each participant was randomly assigned to one
of the four between-subjects conditions; namely BARTuniform
(N = 190), BARTnormal-H (N = 195), BARTnormal-M (N = 197),

and BARTnormal-L (N = 190). In the BARTuniform the bal-
loons’ explosion points were drawn from U(1, 64). In the
three versions of the BARTnormal, the explosion points were
drawn from three different normal distributions that varied
in terms of their standard deviation (SD); namely, N(32, 12)
representing a high SD (BARTnormal-H), N(32, 18) represent-
ing a medium SD (BARTnormal-M), andN(32, 6) representing
a low SD (BARTnormal-L). In all four implementations, bal-
loons had a maximum capacity C of 64. Participants earned
1 cent per successful inflation; that is, their bonus equalled
the sum of the number of inflations of balloons that did not
explode.

Some of the previous research relying on the BARTuniform
implemented a predefined sequence of explosions, in order
to avoid random variation of samples and thus to reduce the
risk of order effects across participants (Lejuez et al., 2002;
Schürmann et al., 2018; Walasek et al., 2014). Although in
principle this should be less of a concern in the BARTnormal
(particularly in the implementation with small standard de-
viations), for reasons of comparability we also generated a
fixed sequence of 30 explosion points, for each of the four
conditions, that closely represented the underlying distribu-
tion (see Figure S1; the respective R script can be accessed
via https://osf.io/kxp8t). The explosion points were ordered
quasi-randomly to generate a fixed sequence of 30 trials, such
that the first three balloons had explosion points larger than
ten and smaller than 54, and such that in the first ten, the sec-
ond ten, and the third ten balloons the following properties
held: five explosion points were greater or equal to the mean
and five were smaller or equal to the mean; the mean was
within 32 ± 0.25 (see also, Lejuez et al., 2002, for a similar
approach to balancing the distributions).

As main dependent variable of participants’ behavior, we
focused on the adjusted BART score that reflects the mean
number of inflations across balloons that did not explode
(Lejuez et al., 2002). Although the adjusted BART score
is typically highly correlated with the BART score (i.e., the
mean number of inflations across all balloons), it is routinely
used in studies on the BART as it may better reflect par-
ticipants’ intended behavior (Lejuez et al., 2002; but see,
Pleskac et al., 2008). Another dependent variable consists
of the total number of explosions per participant. It has been
argued that the latter is advantageous as compared to the ad-
justed BART score because it may be related somewhat more
strongly to particular risk-taking behaviors (e.g., Schmitz et
al., 2016), which is why we additionally considered this de-
pendent variable in our analyses as a robustness check.

General task representation. We assessed participants’
general task representation with the following question: “The
question below refers to how the explosion points of the dif-

4We ensured a fair payment of at least 8 USD per hour even
if participants would have earned less based on their performance.
Participants were not previously informed about this policy.

https://osf.io/kxp8t
https://doi.org/10.1037/xge0001036.supp
https://osf.io/kxp8t
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ferent balloons were distributed. Do you believe that the
explosion points were clustered around a specific value, or
do you believe that the explosion points were randomly dis-
tributed across the entire range of the screen?” Participants
provided their response using a slider ranging from 0 (labeled
“very confident that explosion points were distributed ran-
domly”) to 50 (labeled “very confident that explosion points
were clustered”).5 In hindsight we realized that the word-
ing of “randomly distributed” might have been ambiguous to
some participants, and in study 2 we hence implemented an
adapted version of assessing participants’ general task repre-
sentations.

Beliefs about optimal behavior. To assess participants’
beliefs about the optimal behavior, we asked them to inflate a
balloon to the size they expected to yield the maximum pay-
off in the long run. The instructions read as follows: “Please
inflate the balloon to the size that you believe would yield
the maximum payoff, were a machine to play this game a
thousand times always inflating the balloons to the indicated
size.” We prompted participants’ beliefs concerning the op-
timal behavior only at the end of the task to avoid potential
anchoring effects.

Propensity measures. To assess participants’ domain-
general risk preferences, we used the GRiPS (Zhang et al.,
2018), and the general risk item of the SOEP (e.g., Dohmen
et al., 2011). In addition, as risk preferences have been
shown to vary across domains (e.g., Weber et al., 2002), we
assessed participants’ domain-specific risk-taking propensity
using the domain-specific risk items of the SOEP. The exact
wording of the items is provided in our preregistration.

Frequency measures. To assess participants’ real-life
risk-taking behaviors, we asked them for the frequency with
which they had engaged in different activities during the past
year. The activities were smoking, drinking, speeding, in-
vesting, gambling, and engaging in risky sports (see prereg-
istration for the wording of the items). These activities were
chosen to cover domains often assessed in questionnaires of
risk-taking propensity (e.g., Blais & Weber, 2006). For each
activity, participants could select both the frequency of be-
havior (from 0 to 100 times) and the desired time frame (per
day, per week, per month, or per year).

Statistical analyses

All analyses were conducted using R version 3.6.0 (R
Core Team, 2019).

To test Hypothesis 1, we modeled participants’ responses
to the question tapping their general task representation (nor-
mally vs. uniformly distributed explosions points). To this
end, we ran a Bayesian regression model with the group as
(non-orthogonal) contrast-coded predictor variable, and the
reported beliefs about the distributional form as dependent
variables (using the rstanarm R package; Goodrich et al.,
2018). The contrasts were BARTuniform vs. the three imple-

mentations of BARTnormal, BARTnormal-H vs. BARTnormal-M,
and BARTnormal-M vs. BARTnormal-L.

To test Hypothesis 2, we estimated the differences in
means and standard deviations of participants’ beliefs about
the optimal behavior in a Bayesian framework. To this end,
we used the BEST R package (Kruschke, 2013; Kruschke
& Meredith, 2018) to fit separate t-distributions for the four
conditions to participants’ beliefs about the optimal behavior,
and then compared the posterior estimates of the means and
standard deviations.

To test Hypothesis 3, we estimated the differences in
means and standard deviations of participants’ adjusted
BART scores in a Bayesian framework. To this end, we
again used the BEST R package (Kruschke, 2013; Kruschke
& Meredith, 2018) to fit separate t-distributions for the four
conditions to participants’ adjusted BART scores, and then
compared the posterior estimates of the means and standard
deviations.

To test Hypothesis 4, we report the Pearson correlations of
(a) the adjusted BART scores and (b) the total number of ex-
plosions per participant with the other measures of risk tak-
ing. We computed these correlations separately for the four
conditions of the distribution condition in a Bayesian frame-
work using the BayesFactor R package (Morey & Rouder,
2018). There were two deviations from our preregistered
analysis plan: First, in addition to the adjusted BART score,
we used the total number of explosions per participant as a
second measure of risk taking, because recent research sug-
gested it to be a potentially better indicator of people’s risk-
taking behavior (Schmitz et al., 2016). Second, to make the
interpretation of the results regarding Hypothesis 4 more ac-
cessible we did not implement the regression models speci-
fied in the preregistration but report correlations, which can
directly be interpreted as effect sizes. As the frequency rat-
ings indicated some highly skewed distributions, we used bi-
narized versions of these measures in the analyses.

In the analyses, we used the default priors provided by
the rstanarm, BEST, and the BayesFactor packages. Specif-
ically, in regression models we used the priors N(0, 10)
for the intercept, and N(0, 2.5) for the coefficients. In the
t-tests, we used the priors N(mean(y), sd(y) ∗ 1000) and
U(sd(y)/1000, sd(y) ∗ 1000) for µ and σ, and E(1/29) for
ν, with ν ≥ 1. Finally, for correlations we used the prior
beta(3, 3).

As suggested by Makowski et al., 2019, we used the
ROPE [−0.1SDy, 0.1SDy] for testing Hypothesis 1, Hypothe-
sis 2, and Hypothesis 3, and the ROPE [−0.05, 0.05] for test-
ing Hypothesis 4. When reporting parameters, we report the

5We preregistered to use a slider ranging from -50 to 50 but acci-
dentally implemented a slider ranging from 0 to 50. Note, however,
that only the labels and no numbers were shown to participants.
This deviation did thus not affect the appearance of the slider or the
interpretations of the results.
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median and the 95% HDI of the posterior distribution, as well
as the proportion of the posterior distribution that lies within
the ROPE (pROPE; note that we interpret the evidence to be
conclusive if this value is smaller than .025).

Results

General task representation

In Hypothesis 1, we predicted that at the end of the task
participants would believe that the explosion points cluster
around a specific value (in line with a normal distribution)
rather than that they are uniformly distributed, irrespective
of the experimental condition. We intended to interpret rat-
ings larger than the midpoint of the response scale (> 25) as
beliefs in line with a normal distribution of explosion points,
and ratings below the midpoint of the scale (< 25) as be-
liefs in line with a uniform distribution of explosions points.
As we will discuss below, we realized that this interpretation
may not be entirely warranted due to the implemented re-
sponse format (a more diagnostic response format was thus
used in study 2). Yet, according to this definition, only in
the BARTnormal-L did most participants (64.61%) believe that
the explosion points were normally distributed, with an av-
erage rating of 29.01. In the other implementations, only the
minority of 39.69% (BARTnormal-M), 32.26% (BARTnormal-H),
and 27.72% (BARTuniform) of participants had this belief,
with average ratings below the midpoint of the scale (i.e.,
20.84 in the BARTnormal-M, 19.15 in the BARTnormal-H, and
18.06 in the BARTuniform). As outlined above, these results
have to be interpreted with caution (see discussion section).

Furthermore, as predicted in Hypothesis 1, participants’
ratings were increasingly more in line with a normal distri-
bution of explosion points within the BARTnormal, the smaller
the SDs of the explosion points’ distributions were: Al-
though there was no conclusive evidence for a difference
between participants’ ratings in the BARTnormal-M and the
BARTnormal-H (b = 1.70, 95% HDI: [-0.82, 4.22, ], pROPE
= .382, d = 0.17), we found conclusive evidence that partic-
ipants’ ratings in the BARTnormal-L were higher than in the
BARTnormal-M (b = 8.16, 95% HDI: [5.50, 10.61], pROPE <
.001, d = 0.63). Moreover, across the three implementations
of the BARTnormal there was conclusive evidence for higher
ratings as compared to in the BARTuniform (b = 4.94, 95%
HDI: [2.87, 7.07], pROPE = .001, d = 0.37).

Beliefs about optimal behavior

In Hypothesis 2, we predicted that at the end of the task,
participants’ beliefs concerning the optimal behavior would
consist of a higher number of inflations and less variability
between participants in the BARTnormal as opposed to in the
BARTuniform. In line with this prediction, participants in the
BARTnormal-L believed the optimal number of inflations to
be higher than participants in the BARTuniform (see Table 1).

Yet, compared to the BARTuniform, there was no conclusive
evidence that participants had different beliefs either in the
BARTnormal-M or in the BARTnormal-H. See Figure 4 for an
overview and Table S1 for the estimates of participants’ av-
erage beliefs.

Furthermore, in line with Hypothesis 2 we found con-
clusive evidence that the beliefs of participants in the
BARTnormal-L and in the BARTnormal-M had a smaller vari-
ability (i.e., across participants), as compared to the beliefs
of participants in the BARTuniform (see Table 1). Yet, there
was no conclusive evidence whether or not participants in
the BARTnormal-H and in the BARTuniform differed concerning
the variability of their beliefs.

As the optimal number of inflations varied (i.e., 32, 28,
25, and 25; see Figure 1)6 across the four implemented ver-
sions of the BART, we also examined the deviance between
participants’ indicated beliefs and the objectively optimal be-
havior in the respective conditions. When doing so, a similar
but even more pronounced pattern in line with Hypothesis
2 emerged. As can be seen in Figure 4, the deviance be-
tween participants’ beliefs about the optimal behavior and
the objectively optimal behavior were consistently larger in
the BARTuniform than in the three implementations of the
BARTnormal (see Table 1).

Overt risk-taking behavior

In Hypothesis 3, we predicted that participants’ adjusted
BART scores would be higher and exhibit less variabil-
ity across participants in the BARTnormal as opposed to in
the BARTuniform. Moreover, we predicted that the adjusted
BART scores would be higher and exhibit less variability
across participants within the BARTnormal, the lower the stan-
dard deviation of the explosion points. In line with this pre-
diction, we found conclusive evidence that, compared to the
BARTuniform, the adjusted BART scores were higher in all
three implementations of the BARTnormal (see Table 2; see
Table S1 for the estimates of participants’ adjusted BART
scores). Within the BARTnormal and further in line with Hy-
pothesis 3, there was conclusive evidence that the adjusted
BART scores were higher in the BARTnormal-L than in the
BARTnormal-M. Yet, there was conclusive evidence that the
adjusted BART scores in the BARTnormal-M were lower as
compared to those in the BARTnormal-H.

Also in line with Hypothesis 3, there was conclusive ev-
idence that the adjusted BART scores exhibited less vari-
ability between participants in the BARTnormal-M and in the
BARTnormal-L, as compared to in the BARTuniform (see Ta-
ble 2). However, there was no conclusive evidence for

6All distributions of explosion points had the same mean of 32,
yet lower standard deviations in the BARTnormal result in a slightly
reduced optimal number of inflations. Therefore, the implementa-
tions of the BARTnormal have a lower optimal number of inflations
than the BARTuniform.

https://doi.org/10.1037/xge0001036.supp
https://doi.org/10.1037/xge0001036.supp
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Table 1

Differences in Participants’ Beliefs About Optimal Behavior Between Experimental Conditions
Comparison ∆ [95% HDI] pROPE d
Mean beliefs about the optimal behavior

BARTnormal-H - BARTuniform 1.56 [-0.85, 4.07] .036 0.16
BARTnormal-M - BARTuniform 0.27 [-1.95, 2.39] .077 0.11
BARTnormal-L - BARTuniform 3.61 [1.54, 5.64] < .001 0.38

SD beliefs about the optimal behavior
BARTnormal-H - BARTuniform -1.81 [-4.51, 0.80] .033 -
BARTnormal-M - BARTuniform -6.03 [-8.30, -3.84] < .001 -
BARTnormal-L - BARTuniform -4.69 [-7.05, -2.38] < .001 -

Deviance of participants’ beliefs about optimal behavior from objectively optimal behavior
BARTnormal-H - BARTuniform 5.55 [3.09, 8.00] < .001 0.47
BARTnormal-M - BARTuniform 7.27 [5.03, 9.37] < .001 0.69
BARTnormal-L - BARTuniform 10.60 [8.52, 12.62] < .001 0.97

Note: The values reported in the first column represent the medians of the posterior distributions and the 95% highest
density interval in brackets. The values in the second column (pROPE) represent the proportion of the posterior distribution
falling within the region of practical equivalence. The values reported in the third column (d) represent the effect size.
Numbers in bold indicate conclusive evidence.
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Figure 4

Participants’ beliefs about the optimal behavior and their actual behavior. Vertical lines indicate the means across partic-
ipants concerning their beliefs about the optimal behavior (solid lines) and their actual behavior (dashed lines). Shaded
areas around the vertical lines indicate the standard deviations of participants’ beliefs about the optimal behavior and of their
adjusted BART scores.

whether the variability between the BARTuniform and the
BARTnormal-H differed. Yet, also in line with Hypothesis 3,

the variability of the adjusted BART scores was lower in
the BARTnormal-M than in the BARTnormal-H, and lower in the
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Table 2

Differences in Overt Risk-Taking Behavior Between Experimental Conditions
Comparison ∆ [95% HDI] pROPE d
Mean adjusted BART scores

BARTnormal-H - BARTuniform 4.48 [3.25, 5.70] < .001 0.71
BARTnormal-M - BARTuniform 2.94 [1.84, 4.06] < .001 0.51
BARTnormal-L - BARTuniform 7.74 [6.73, 8.73] < .001 1.21
BARTnormal-M - BARTnormal-H -1.54 [-2.64, -0.44] .002 -0.27
BARTnormal-L - BARTnormal-M 4.80 [3.98, 5.63] < .001 0.77

SD of the adjusted BART scores
BARTnormal-H - BARTuniform 0.13, [-0.90, 1.17] .078 -
BARTnormal-M - BARTuniform -1.31 [-2.37, -0.26] .004 -
BARTnormal-L - BARTuniform -3.37 [-4.28, -2.42] < .001 -
BARTnormal-M - BARTnormal-H -1.44 [-2.50, -0.46] .001 -
BARTnormal-L - BARTnormal-M -2.06 [-2.95, -1.13] < .001 -

Deviance of the adjusted BART scores from optimal behavior
BARTnormal-H - BARTuniform 8.47 [7.22, 9.70] < .001 1.36
BARTnormal-M - BARTuniform 9.94 [8.82, 11.04] < .001 1.77
BARTnormal-L - BARTuniform 7.73 [6.72, 8.74] < .001 2.53
BARTnormal-M - BARTnormal-H 1.46 [0.37, 2.57] .003 0.27
BARTnormal-L - BARTnormal-M 4.80 [3.96, 5.62] < .001 0.77

Note: The values reported in the first column represent the medians of the posterior distributions and the 95% highest
density interval in brackets. The values in the second column (pROPE) represent the proportion of the posterior distribution
falling within the region of practical equivalence. The values reported in the third column (d) represent the effect size.
Numbers in bold indicate conclusive evidence.

BARTnormal-L than in the BARTnormal-M.
We again also examined the deviance between partici-

pants’ adjusted BART scores and the objectively optimal be-
havior in the respective conditions. When doing so, a similar
but considerably stronger pattern emerged in line with Hy-
pothesis 3: The deviances between the adjusted BART scores
and the objectively optimal behavior were much larger in the
BARTuniform as compared to the three implementations of the
BARTnormal (see Table 2). Moreover, within the BARTnormal
the deviance between the adjusted BART scores and the ob-
jectively optimal behavior was larger in the BARTnormal-H
as compared to the in the BARTnormal-M and larger in the
BARTnormal-M as compared to in the BARTnormal-L.

Convergent validity

In Hypothesis 4, we predicted that the BARTnormal
would have a higher convergent validity as opposed to the
BARTuniform. To this end, we tested the correlations of two
indicators extracted from the BART (i.e., the adjusted BART
score and the total number of explosions per participant) with
14 other measures of risk taking.

Overall, adjusted BART scores were only weakly to
moderately related to the other measures (see Figure 5
and Table S2, see Table S11 for descriptive statistics of
the different measures), with average correlations of r
= .08 (BARTuniform), r = -.05 (BARTnormal-H), r = .12
(BARTnormal-M), and r = .04 (BARTnormal-L). The total

number of explosions per participant was somewhat more
strongly but still weakly related to the other measures,
with average correlations of r = .06 (BARTuniform), r = -
.03 (BARTnormal-H), r = .14 (BARTnormal-M), and r = .05
(BARTnormal-L). Moreover, only in the BARTnormal-M was
there a series of measures with conclusive evidence that the
correlations were different from 0. Specifically, there was
conclusive evidence for associations between the adjusted
BART score and GRiPS (r = .23), SOEP general (r = .27),
and SOEP leisure (r = .24); and for associations between
the total number of explosions and GRiPS (r = .26), SOEP
general (r = .30), SOEP finance (r = .23), SOEP health (r
= .20), and SOEP leisure (r = .26). For this reason, we
selected the BARTnormal-M from the three implementations
of the BARTnormal as the focus of our comparison with the
BARTuniform and report the analyses for the BARTnormal-H and
BARTnormal-L in the online Supplemental Material (Section
7.1).

Compared against each other, there were some indica-
tions that the BARTnormal-M exhibited a slightly higher con-
vergent validity with the other measures of risk taking as
compared to the BARTuniform: The adjusted BART score
was more strongly correlated with 11 of the 14 other mea-
sures in BARTnormal-M, and the total number of explosions
per participant was more strongly correlated with 12 of the
14 other measures of risk taking (see Figure 5). However,
with an average increase of .04 (adjusted BART scores)

https://doi.org/10.1037/xge0001036.supp
https://doi.org/10.1037/xge0001036.supp
https://doi.org/10.1037/xge0001036.supp
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Figure 5

Convergent validity of the BART with other measures of risk taking, separately for the BARTuniform and the BARTnormal-M. The
left panel shows the correlations based on the adjusted BART scores. The right panel shows the correlations based on the
total number of explosions per participant. Propensity measures are depicted in yellow (light gray); frequency measures are
depicted in green (dark gray). The dotted lines indicate the boundaries of the region of practical equivalence at -.05 and .05.
The bold black line connects the average correlations of the two task implementations.

and .08 (total number of explosions per participant) across
the 14 correlations, these differences did not constitute con-
clusive evidence—although in the most extreme case the
correlations almost doubled (i.e., between adjusted BART
score and SOEP general) and tripled (i.e., between number
of explosions per participant and SOEP general) from the
BARTuniform to the BARTnormal-M.

Discussion

In study 1 we implemented three new distributions of ex-
plosion points to test the potential benefits of employing an
improved representative design in the BART. On the one
hand, the newly implemented BARTnormal resulted in sev-
eral improvements concerning participants’ task representa-
tions and performance. On the other hand, there was no evi-
dent improvement in the task’s convergent validity with other
measures of risk taking, and all four implemented versions
of the BART resulted in similar correlations to those found
in earlier studies (e.g., Duckworth & Kern, 2011; Frey et al.,
2017; Lauriola et al., 2014; Mishra & Lalumière, 2011). If
at all, only the BARTnormal-M achieved slight improvements
in this respect. Yet, the evidence for these increases was not
conclusive, and we subsequently tested the convergent valid-
ity again in study 2 as a robustness check.

Two specific aspects of these findings warrant further dis-
cussion. First, during the assessment of participants’ general
task representation, we asked whether participants believed

the explosion points in the BART to be randomly distributed
or to cluster around a specific value. We realized that this
assessment might have led to distorted results, for the fol-
lowing two reasons: First, we were not explicit about the
meaning of randomly distributed. Thus, participants might
not necessarily have interpreted this term to mean uniformly
distributed across the whole range. Second, we prompted
participants’ beliefs using a continuous slider, with one ex-
treme labeled randomly distributed and the other extreme la-
beled clustered around one value. Our intention was to in-
terpret ratings below the midpoint of this scale as evidence
that participants’ beliefs were in line with a uniform distribu-
tion of explosions (and vice versa). Yet, this interpretation is
problematic, as any deviation from the left-most rating (i.e.,
randomly distributed) per definition represents some form of
clustering—in line with a normal distribution (e.g., a rating
of 15 would imply a normal distribution with very wide dis-
persion). Therefore, we implemented the assessment of par-
ticipants’ general task representation again in study 2, using
an improved two-step format as well as making use of visu-
alizations (for details see study 2).

Second, we tested whether the different implementations
of the BART resulted in systematically different beliefs about
the optimal behavior, as well as in systematically different
behaviors (i.e., adjusted BART scores). To this end, we com-
pared these two indicators between the four BART imple-
mentations in two ways: by comparing the absolute values,
and by comparing the deviance of these values from the ob-
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jectively optimal behavior. The latter differed substantially
more across the four BART implementations as compared to
the former. Yet, although this finding could be interpreted as
a strong sign of more accurate learning in the BARTnormal,
we cannot rule out that this pattern also emerged because
participants underestimated the average explosion points.

Study 2: Does an Enhanced Representative Design
Improve the BART’s Test–Retest Reliability?

Study 2 followed our theoretical rationale introduced in
study 1, and tested whether a more representative design im-
proves the BART’s reliability—in addition to testing the ro-
bustness of the findings observed in study 1. Specifically,
assuming that people’s willingness to take risks remains at
least somewhat stable over time (e.g., Frey et al., 2017; Mata
et al., 2018), and that people are indeed better able to ex-
press their intended degree of risk taking in the BARTnormal
as compared to in the BARTuniform, the test–retest reliability
of the former should be higher than that of the latter. To test
this assumption, we ran a retest of study 1 after about one
month. Specifically, we tested the following two hypotheses:

Hypothesis 5: Reliability of beliefs about op-
timal behavior: Participants’ beliefs about the
optimal value exhibit a higher test–retest reli-
ability in the BARTnormal as opposed to in the
BARTuniform. Moreover, we expected the test–
retest reliability within the BARTnormal to be
higher, the lower the standard deviations of the
explosion points become.

Hypothesis 6: Reliability of overt risk-taking
behavior: There is a higher test–retest reliabil-
ity of the adjusted BART scores and the to-
tal number of explosions per participant in the
BARTnormal as compared to in the BARTuniform.
Moreover, we expected the test–retest reliability
within the BARTnormal to be higher, the lower
the standard deviations of the explosion points
become.

Furthermore, we also used study 2 to assess the robustness
of the findings observed in study 1, particularly so concern-
ing Hypothesis 1 (i.e., participants’ general task representa-
tion, where we implemented an improved response format
in study 2) and concerning Hypothesis 4 (i.e., the BART’s
convergent validity with other measures of risk taking and
related constructs). Regarding the latter, in study 2 we aimed
to test the possibility that the relatively low convergent valid-
ity resulted because of our particular selection of additional
risk-taking measures, as the BART may also capture related
constructs such as impulsivity and sensation seeking (Lauri-
ola et al., 2014; Schmitz et al., 2016; Sharma et al., 2014).
To this end, in study 2 we also administered the UPPS scale

(Whiteside & Lynam, 2001; Whiteside et al., 2005), a widely
used instrument to tap urgency, lack of premeditation, lack of
perseverance, and sensation seeking (for a review and meta-
analysis, see Sharma et al., 2014).

Method

Participants and sample characteristics

The 772 participants from study 1 were invited to partici-
pate in a retest after an interval of about one month (we sent
a maximum of three invitations). We imposed the same in-
clusion criteria as in study 1. Of the 772 participants from
study 1, 671 began with the retest. Of these, 632 met our
inclusion criteria and their data were used for the subse-
quent analyses (46.2% female; Mage = 38.3, S Dage = 10.9;
highest completed degree: 0.5% no high school, 37.0% high
school, 40.7% bachelor, 10.0% master, 10.6% professional,
1.3% doctor; job status: 3.3% student, 11.2% unemployed,
82.6% working, 2.9% retired). On average, study comple-
tion took 19 minutes, and on average participants were re-
imbursed with 4.64 USD. Participants were assigned to the
same condition as in study 1 (i.e., of the 632 participants, 157
completed the BARTuniform, 158 completed the BARTnormal-H,
157 completed the BARTnormal-M, and 160 completed the
BARTnormal-L).

Procedure

The study was again conducted online and participants
used their own devices. After providing informed consent,
participants completed the BART (i.e., same experimental
condition as in study 1; with the same sequence of explosion
points). Next, in randomized order, they provided their be-
liefs about the optimal behavior and reported their general
task representation. Then, participants completed, in ran-
domized order, the GRiPS, the assessment of real-life risk-
taking behavior, and the SOEP items. At the end of the study,
participants completed the UPPS scale and then reported how
focused they were during the study, as well as the device they
used to complete the study. Finally, participants had the pos-
sibility to provide free-text feedback. Screenshots of study 2
are provided at https://osf.io/kxp8t.

General task representation

The revised assessment of participants’ general task rep-
resentations was implemented as follows. First, participants
received general instructions about the subsequent task and
were then presented with two scenarios of distributions of ex-
plosion points (i.e., uniform and normal distribution; in ran-
domized order), each of which included an illustration and
an explanation of how to read the figures. They then pro-
vided a binary rating of whether they believed the explosion
points to be uniformly distributed or normally distributed.
Finally, participants reported their confidence in their choice

https://osf.io/kxp8t
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on a slider ranging from 0 (labeled “Not confident at all”) to
50 (labeled “Very confident”). For a detailed formulation of
the items, see the preregistration.

Statistical analysis

The retest of Hypothesis 1 and Hypothesis 4 followed the
statistical analysis detailed in study 1. To test Hypothesis 1,
we first reflected the sign of ratings from participants who
had indicated that they believed explosion points to be uni-
formly distributed and then collapsed the ratings (i.e., result-
ing in a scale ranging from -50 to 50, with the lower end
indicating a high confidence that explosion points were uni-
formly distributed, and the upper end indicating a high con-
fidence that explosion points were clustered). In the test of
Hypothesis 4, we also included the four dimensions of the
UPPS scale.

To test Hypothesis 5, we computed the test–retest relia-
bilities of participants’ beliefs about the optimal behavior,
separately for the different BART implementations. We then
tested whether there was conclusive evidence that the test–
retest reliabilities from the three BARTnormal implementa-
tions were higher than those from the BARTuniform. More-
over, we compared the test–retest reliabilities within the
BARTnormal to investigate whether lower variability in the
underlying distribution led to higher stability in behavior. Fi-
nally, we contrasted the test–retest reliabilities with the coef-
ficient of variation—a standardized measure of dispersion—
of the various measures (see online Supplemental Material
Table S10). We conducted the latter analysis to examine pos-
sible trade-offs between the measures’ reliability and their
potential to capture interindividual differences.

To test Hypothesis 6, we computed the test–retest reli-
abilities of the adjusted BART scores and the total num-
ber of explosions per participant, separately for the differ-
ent BART implementations. We then tested whether there
was conclusive evidence that the test–retest reliabilities of
the three BARTnormal implementations were higher than that
of the BARTuniform. Moreover, we compared the test–retest
reliabilities within the three BARTnormal implementations to
investigate whether lower variability in the underlying dis-
tribution leads to higher stability in the behavior. We again
contrasted the test–retest reliabilities with the coefficient of
variation of the various measures, to analyze possible trade-
offs between the measures’ reliability and their potential to
capture interindividual differences (see online Supplemental
Material Table S10).

We used the same priors and ROPEs in the analysis of
study 2 as we did in study 1.

Results

General task representation

In Hypothesis 1 we predicted that at the end of the task
participants would believe that the explosion points cluster
around a specific value (in line with a normal distribution)
rather than that they are uniformly distributed, irrespective of
the experimental condition. As Figure 6 illustrates, this pre-
diction was confirmed: Specifically, 75.3.% (BARTuniform),
76.3% (BARTnormal-H), 76.4% (BARTnormal-M), and 84.2%
(BARTnormal-L) of participants indicated that they believed
that the explosion points were clustered, with average con-
fidence ratings of 17.64 in the BARTuniform, 19.22 in the
BARTnormal-H, 19.98 in the BARTnormal-M, and 25.51 in the
BARTnormal-L (on a scale ranging from -50 to 50).

Moreover, as can be seen in Figure 6, there was a trend
towards higher confidence in this belief, the narrower the
standard deviations of the BARTnormal became. Yet, there
was no conclusive evidence for differences across the tested
contrasts between the BARTuniform and the BARTnormal im-
plementations (b = 3.91, 95% HDI: [-1.03, 8.70], pROPE =
.307, d = 0.15), the BARTnormal-M and the BARTnormal-H (b
= -0.79, 95% HDI: [-6.80, 5.35], pROPE = .611, d = 0.03),
and the BARTnormal-L and the BARTnormal-M (b = -5.49, 95%
HDI: [-11.39, 0.53], pROPE = .174, d = 0.21). The pat-
tern that almost no data points are present in the middle of
the distribution reveals that most participants were relatively
confident in their beliefs about the distributional form of the
explosion points.

Convergent validity

In Hypothesis 4 we predicted that the BARTnormal would
have a higher convergent validity with other measures of risk
taking than the BARTuniform. As the respective evidence was
inconclusive in study 1, we tested the convergent validities
in study 2 again to investigate whether the observed patterns
were robust. To this end, we examined the correlations of two
indicators extracted from the BART (i.e., the adjusted BART
score and the total number of explosions per participant) with
18 other measures of risk taking.

Overall, participants’ adjusted BART scores were only
weakly to moderately related to the other measures (see Ta-
ble S6), with average correlations of r = .08 (BARTuniform),
r = .01 (BARTnormal-H), r = .08 (BARTnormal-M), and r =
.05 (BARTnormal-L). The total number of explosions per
participant exhibited about the same convergent validity as
the adjusted BART scores, with average correlations of
r = .08 (BARTuniform), r = .03 (BARTnormal-H), r = .07
(BARTnormal-M), and r = .06 (BARTnormal-L). Moreover, only
in the BARTnormal-M and the BARTuniform was there conclu-
sive evidence that some correlations were different from 0.
Specifically, in the BARTuniform there was conclusive evi-
dence for associations between the adjusted BART scores
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Figure 6

Distributions of participants’ beliefs that the balloons’ explosion points were uniformly distributed (rating of -50) vs. that they
were normally distributed (rating of 50). Beliefs were assessed at the end of the task. Vertical lines indicate the median ratings,
separately for the four experimental conditions. The dotted gray line indicates the center of the scale, which corresponds to
minimal confidence (i.e., indifference between the two distributional forms).

and the GRiPS (r = .24), SOEP general (r = .22), and SOEP
driving (r = .22); and between the total number of explo-
sions per participant and GRiPS (r = .23), SOEP general (r
= .24), and sensation seeking (r = .22). In the BARTnormal-M,
there was conclusive evidence for associations between the
adjusted BART scores and GRiPS (r = .21), SOEP leisure
(r = .21), SOEP social (r = .26) and smoking (r = -.20);
and between the total number of explosions per participant
and SOEP general (r = .20), and SOEP social (r = .26). We
again selected the BARTnormal-M from the three implementa-
tions of the BARTnormal as the focus of our comparison with
the BARTuniform and report the analyses on BARTnormal-H and
BARTnormal-L in the online Supplemental Material (Tables S8
and S9).

Compared to each other, there were no indications that the
BARTnormal-M had a higher convergent validity with the other
measures than the BARTuniform. Specifically, only 8 and 7
of the 18 other measures were more strongly correlated, and
10 and 11 of the 18 other measures were less strongly cor-
related with the adjusted BART scores and the total num-
ber of explosions per participant, respectively. Moreover,
the average differences in convergent validity between the
BARTuniform and the BARTnormal-M where ∆r = .00 (adjusted
BART scores) and ∆r = -.01 (total number of explosions per
participant) across the 18 correlations.

For the UPPS scale newly included in study 2, the corre-

lations with the adjusted BART scores and the total number
of explosions per participant were around the same size as
found for the other measures. Specifically, the mean abso-
lute correlations of the four dimensions of the UPPS scale
with the adjusted BART scores were r = .07 (BARTuniform),
r = .04 (BARTnormal-H), r = .08 (BARTnormal-M), and r =
.06 (BARTnormal-L), and those with the total number of ex-
plosions per participants were r = .11 (BARTuniform), r =
.05 (BARTnormal-H), r = .10 (BARTnormal-M), and r = .07
(BARTnormal-L).

Test–retest reliability of beliefs about optimal behavior

In Hypothesis 5, we predicted that participants’ beliefs
about the optimal behavior would exhibit a higher test–
retest reliability in the BARTnormal as opposed to in the
BARTuniform, and that within the BARTnormal implementa-
tions, the test–retest reliability would be higher, the lower
the standard deviation of the explosion points.

The test–retest reliabilities of participants’ beliefs about
the optimal behavior were medium to large with r =
.40 (BARTuniform), r = .41 (BARTnormal-H), r = .26
(BARTnormal-M), and r =.43 (BARTnormal-L; see also Figure
S5 and Table S10). Contrary to our predictions, there was
no conclusive evidence for differences between any of the
test–retest reliabilities (see Table 3).
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Table 3

Differences in Test–Retest Reliabilities of BART Indicators
Between Experimental Conditions

Implementation ∆r [95% HDI]
Belief about the optimal value

BARTnormal-H - BARTuniform .00 [-.17, .19]
BARTnormal-M - BARTuniform -.15 [-.34, .05]
BARTnormal-L - BARTuniform .03 [-.15, .21]
BARTnormal-M - BARTnormal-H -.15 [-.35, .04]
BARTnormal-L - BARTnormal-H .03 [-.15, .21]
BARTnormal-L - BARTnormal-M .17 [-.01, .37]

Adjusted BART score
BARTnormal-H - BARTuniform .14 [ .01, .27]
BARTnormal-M - BARTuniform .07 [-.07, .20]
BARTnormal-L - BARTuniform -.16 [-.33, -.00]
BARTnormal-M - BARTnormal-H -.07 [-.19, .04]
BARTnormal-L - BARTnormal-H -.30 [-.45, -.16]
BARTnormal-L - BARTnormal-M -.23 [-.39, -.08]

Total number of explosions per participant
BARTnormal-H - BARTuniform .19 [ .04, .33]
BARTnormal-M - BARTuniform .16 [ .01, .31]
BARTnormal-L - BARTuniform .01 [-.16, .18]
BARTnormal-M - BARTnormal-H -.03 [-.16, .10]
BARTnormal-L - BARTnormal-H -.17 [-.32, -.02]
BARTnormal-L - BARTnormal-M -.14 [-.30, .00]

Note: The reported values represent the medians of the pos-
terior distributions and the 95% highest density interval in
brackets. Numbers in bold indicate conclusive evidence.

Test–retest reliability of observed risk-taking behavior

In Hypothesis 6, we predicted that there would be a higher
test–retest reliability of the adjusted BART scores and the to-
tal number of explosions per participant in the BARTnormal
as compared to in the BARTuniform, and that within the
BARTnormal implementations, the test–retest reliability would
be higher, the lower the standard deviation of the explosion
points.

The test–retest reliabilities of the adjusted BART scores
were high in the BARTuniform (r = .59), the BARTnormal-H (r =
.73), and the BARTnormal-M (r = .65), and, surprisingly, some-
what lower in the BARTnormal-L (r = .42). There was con-
clusive evidence for differences in the test–retest reliabilities
between the BARTnormal-H and the BARTnormal-L (∆r = .30,
95% HDI: [.16, .45]; pROPE < .001), and the BARTnormal-M
and the BARTnormal-L (∆r = .23, 95% HDI: [.08, .39]; pROPE
= .007). All other differences represented inconclusive evi-
dence (see Table 3).

Regarding the total number of explosions per participant,
we found high test–retest reliabilities in the BARTnormal-H
(r = .66) and the BARTnormal-M (r = .63), and somewhat
lower ones in the BARTuniform (r = .47), and the BARTnormal-L
(r = .48). There was no conclusive evidence for differ-

ences between the test–retest reliabilities, neither between
the BARTuniform and the BARTnormal implementations, nor
within the BARTnormal implementations (see Table 3).

Test–retest reliability of other measures of risk taking

The test–retest reliabilities of the various propensity and
frequency measures were similarly high, with average corre-
lations of r = .68 and r = .71, respectively (see also Figure
S5 for an overview of the test–retest reliabilities and the co-
efficients of variation of all risk-taking measures).

Discussion

In study 2 we tested the robustness of the findings ob-
served in study 1; namely, concerning participants’ general
task representations and the convergent validity of the BART
with other measures of risk taking and related constructs,
spanning measures of domain-general and domain-specific
risk preference, sensation seeking, impulsivity, and the fre-
quency of specific real-life behaviors. Moreover, we com-
pared the test–retest reliability of the BARTnormal with that
of the BARTuniform. As predicted, we observed a strong mis-
match between people’s general task representation and the
stochastic structure of the BARTuniform, and this mismatch
did not emerge in the BARTnormal. This corroborates the find-
ings of our reanalyses provided in the first part of this article,
namely, that participants’ representations of the balloons’ ex-
plosion points is in line with a normal distribution.

The repeated observation of low convergent validity of the
BART as well as its relatively high test–retest reliability call
for some discussion; three possibilities have to be considered
in this regard. First, low correlations between any two mea-
sures may emerge if one of them is unreliable (i.e., the test–
retest reliabilities put upper bounds on the correlations be-
tween measures; e.g., Kane & Case, 2004). Second, low cor-
relations may emerge if measures fail to capture substantial
variation across individuals (i.e., variance restriction). Our
results indicated that the BART as well as the other mea-
sures performed well in these two respects, with high test–
retest reliabilities and high coefficients of variation (i.e., a
standardized measure of dispersion; see online Supplemen-
tal Material Section 8). Third, low correlations may emerge
if measures fail to assess the same underlying constructs or
processes involved. In light of the observation that the other
risk-taking measures (including measures of impulsivity and
sensation seeking) had a high convergent validity between
each other (see Figure S4), but not with the BART, our find-
ings imply that the BART may be a relatively reliable task,
but it remains unclear what it measures (see also our remarks
on cognitive modeling in the general discussion).
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General Discussion

In this article we investigated the potential benefits of em-
ploying the principles of representative design to obtain valid
and reliable psychological assessments. We did so by fo-
cusing on a widely used behavioral measure of risk taking,
the BART. Our primary goal was to test the extent to which
adapting an existing task design, by making it more repre-
sentative, would improve the task’s psychometric properties.
Such improvements are much needed in various areas of be-
havioral research (Frey et al., 2017; Lauriola et al., 2014;
Lönnqvist et al., 2015; Millroth et al., 2020)—for instance,
when investigating the functional neural architecture of risk
taking in neuroimaging studies (e.g., Schonberg et al., 2011,
2012; Tisdall et al., 2020). Hence, we reanalyzed data from
three previous studies and, based on these findings, adapted
the BART’s stochastic structure by following the principle
of formal sampling (Hammond, 1966). Specifically, we
changed the distribution of the explosion points from a uni-
form distribution to a normal distribution—the distribution
to be expected from real balloons (Figure 2). Consequently,
in two empirical studies we tested whether this adaptation
would lead to improvements in participants’ beliefs about the
task, as well as in the task’s psychometric properties. Our
main findings can be summarized as follows.

First, our reanalyses of five datasets from three previous
studies (Frey et al., 2017; Schürmann et al., 2018; Steiner
& Frey, 2020), as well as the results of our experimental
studies (in particular study 2; see Figure 6), largely con-
firmed that the typical implementation of the BART con-
flicts with participants’ beliefs about how explosion points
are distributed. Specifically, both before and after having
completed the BART, and irrespective of the BART imple-
mentation (i.e., BARTuniform vs. BARTnormal), the majority
of participants believed that the explosion points clustered
around a specific value—in line with a normal distribution,
and in line with how real balloons explode (Figure 2).

Second, participants who completed the BARTnormal (as
compared to participants who completed the BARTuniform)
believed that the optimal behavior was achieved at a higher
inflation stage; their beliefs were more closely aligned with
the objectively optimal behavior, and also varied less across
participants. In terms of their actual behavior, participants’
adjusted BART scores were consistently higher, closer to the
objectively optimal behavior, and exhibited less variability
across participants in the BARTnormal as compared to in the
BARTuniform. In short, in the BARTnormal participants were
better able to learn about the optimal behavior, and con-
verged more strongly in doing so—yet without leading to
problematic variance restriction—overall suggesting a less
noisy learning process. Taken together, these findings con-
firmed the first three of our hypotheses.

Third and contrary to our expectations, there was no con-
clusive evidence that these improvements resulted in a sys-

tematic improvement of the BART’s convergent validity with
other measures of risk taking, nor of its test–retest reliability.
Specifically, all four BART implementations correlated only
weakly with any of the other risk-taking measures—in line
with observations made in previous studies (Duckworth &
Kern, 2011; Frey et al., 2017; Lauriola et al., 2014; Mishra &
Lalumière, 2011)—whereas the other risk-taking measures
(especially the propensity measures) correlated highly with
each other. The test–retest reliabilities were relatively high
for all implemented versions of the BART as well as for the
other risk-taking measures—thus also in line with previous
research (Frey et al., 2017; White et al., 2008). This might
have left little room for improvement for the BARTnormal in
this respect.

Limitations

All in all, our empirical findings suggest that the BART
captures a reliable signal. Yet, our studies indicated that this
signal does not consistently tap the constructs of risk pref-
erence (in terms of general and domain-specific risk prefer-
ences), impulsivity, or sensation seeking, and as such could
not reveal what this signal reflects. This could be consid-
ered a limitation of our study, as yet other psychological con-
structs (e.g., intelligence; Schmitz et al., 2016) could be as-
sessed in future research, in order to study the role of repre-
sentative design in fostering the identification of such asso-
ciations. Relatedly, although several indications suggest that
the additional criteria used here to assess risk-taking behav-
iors are valid (e.g., Dohmen et al., 2011; Eisenberg et al.,
2019; Frey et al., 2017; Sharma et al., 2014; Steiner et al., in
Press), future research may collect further evidence concern-
ing the BART’s external validity using yet other measures,
and potentially by focusing on extreme groups of specific
risk takers (Hopko et al., 2006; Lejuez, Aklin, Jones, et al.,
2003; Lejuez et al., 2004).

Moreover, in previous work people’s representations of
the stochastic structure of the BART have been studied by
means of cognitive modeling. This work has put forth im-
portant insights and triggered essential discussions on the
BART’s task design (e.g., concerning whether people may
incorrectly adopt a stationary representation of explosion
probabilities; Pleskac, 2008; Wallsten et al., 2005, but see
Schürmann et al., 2018). In our approach, we did not imple-
ment any cognitive modeling analyses but directly prompted
participants about their subjective beliefs concerning the dis-
tributions of explosion points—following a proof-of-concept
recently provided by Schürmann et al. (2018). We followed
this route because current models of the BART do not di-
rectly account for the underlying task structure at the level
we have focused on (i.e., representative design in terms of
normal vs. uniform distributions of explosion points), as
well as due to a debate concerning parameter recoverability
of the state-of-the-art models of the BART (van Ravenzwaaij
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et al., 2011). That said, recent developments appear to mit-
igate the latter issue (Park et al., 2019), and in future work
such models (and promising novel variants thereof; Pleskac
& Wershbale, 2014) may render possible further insights into
the cognitive processes involved in the new BART versions
presented here.

The Role of Representative Task Design in Psychological
Assessment

As introduced in the beginning, representative design
refers to “the arrangement of conditions of an experiment so
that they represent the behavioral setting to which the results
are intended to apply” (Araújo et al., 2007, p. 71). In other
words, the experimental stimuli in a task should follow the
same stochastic principles (e.g., distributions, intercorrela-
tions) to represent the same or similar cues that are operating
in the situations the task is supposed to generalize to (see
also, Dhami et al., 2004). In the ideal case, representative
tasks should therefore also tap into the same psychological
processes as are present in real-life situations. In the context
of risk-taking behaviors, these processes may involve a sen-
sitivity to rewards (e.g., expected benefits, risk conception
etc.; Dohmen et al., 2019; Gray, 1982; Kahneman & Tver-
sky, 1979; Weber et al., 2002) and losses (e.g., loss aver-
sion, punishment sensitivity, regret etc.; Gray, 1982; Kahne-
man & Tversky, 1979; Loomes & Sugden, 1982)—and, de-
pending on the situation, potentially many more factors (e.g.,
amount of knowledge, affective state, peer influence, com-
petitive pressure; Fischhoff et al., 1978; Frey, 2020; Jellison
& Riskind, 1970; Loewenstein et al., 2001; Morrongiello &
Lasenby-Lessard, 2007; Phillips et al., 2014).

What does the current observation—that is, that an im-
proved representative design in the BART does not substan-
tially increase its convergent validity with other measures of
risk taking—then imply for valid psychological assessments
more generally? We see two possibilities in this respect;
specifically, representative design may need to be established
on two separate levels: First, the behavioral task (here: the
BART) needs to be representative of its intended model be-
havior (here: inflating balloons in real life), requiring ade-
quate abstractions to be used in lab (or online) assessments.
Second, the chosen model behavior needs to be representa-
tive of the wider class of behavior that is of interest (here:
risk-taking behaviors), which relates to the non-trivial issue
of selecting an adequate reference class (Hoffrage & Her-
twig, 2006).

Concerning representativeness at the first level, it may
be helpful to draw on two concepts that have been used in
research into virtual environments (e.g., flight simulators).
The concept of action fidelity describes the match between
performance in the simulation and performance in the sim-
ulated environment (Stoffregen et al., 2003).7 Action fi-
delity implies that stochastic processes and relationships be-

tween variables are similar in the simulated and the real
environment—only then will simulated behavior generalize
to the respective behavior in reality.8 Hence, our adaptation
of the BART primarily targeted its action fidelity: Specif-
ically, we employed formal sampling (Dhami et al., 2004;
Hammond, 1966) to close a gap between how the explo-
sions of balloons are distributed in the task and how they
are distributed in the real world, making a transfer from
task performance to real-life performance more likely in the
BARTnormal. To some extent, this transfer from the abstract
virtual environment to the real world may also rest on expe-
riential fidelity, which is thought to be present if a person has
the feeling of actually being in the simulated environment
(Stoffregen et al., 2003). Despite improvements in represen-
tative design, even the BARTnormal might thus have failed to
capture relevant psychological processes and respective sub-
jective experiences sufficiently strongly. Although experien-
tial fidelity may not be a necessary requirement to achieve
action fidelity (Araújo et al., 2007; Moroney et al., 1994;
Stoffregen et al., 2003), implementing the BART with loud
explosion sounds, or even implementing a BART version
with real balloons, may trigger substantially stronger physio-
logical reactions. Yet, it is important to keep in mind the ethi-
cal and practical intricacies of such implementations, making
their adoption in future assessment contexts unlikely.

Concerning representativeness at the second level, a
model behavior (e.g., inflating balloons in real life) needs
to be representative of the wider class of behaviors that are
of interest (e.g., risk-taking behaviors more generally). It
has previously been argued that the sequential process of
inflating balloons might exhibit properties that are relevant
in many risk-taking behaviors, such as the requirement to
learn in dynamic environments, the feeling of escalating ten-
sion when pursuing additional rewards, and correlated risk-
reward structures (Lejuez et al., 2002; Leuker et al., 2018;
Pleskac & Hertwig, 2014; Pleskac et al., 2020; Schonberg
et al., 2011). The absence of substantial improvements in the
BART’s external validity (i.e., in response to the elementary
stochastic adaptions implemented here) thus hints at another
possibility: The model behavior of inflating balloons may
simply not represent a wider class of risk-taking behaviors
in real life well, thus failing to capture sufficiently many of
the psychological processes that are relevant therein. In line
with Brunswik’s original idea of representative design, we

7Task performance can be measured, for example, in terms of
transfer effects of training, of completion time needed, or of the
variance in performance across trials (e.g., Kozak et al., 1993; Roc-
cio, 1995).

8Note that this need not necessarily be the case for a complete
real-life behavior from start to end, but can also be the case only for
subcomponents of interest. For example, in the case of a flight sim-
ulator training, only specific take-off and landing maneuvers may
constitute the target behavior, and not necessarily the entire flight.
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thus believe that in future work it will be indispensable to
first systematize the real-life behaviors of interest—including
the involved psychological and structural properties—to then
identify promising model behaviors.

A look ahead: Implications for developing new task designs

Our analyses led to two insights for the future develop-
ment of behavioral tasks. First, under the assumption that
the model behaviors of most current tasks (e.g., inflating
balloons) do not represent the targeted risk-taking behaviors
well, nor capture sufficiently well the relevant psychological
processes therein, new model behaviors have to be identified.
To this end, ecological analyses will be required to map the
actual properties and processes involved in the real-life be-
haviors of interest, for example, using ecological momentary
assessment techniques (e.g., Miller, 2012; Ohly et al., 2010;
Trull & Ebner-Priemer, 2013). To illustrate, such momen-
tary assessments could be used to investigate the risks people
(have to) take in their lives, what information they consider
while doing so, and what the structural properties of the re-
spective environments look like (e.g., Frey, 2020; Pleskac
et al., 2020). Based on these insights, respective tasks could
be developed with an emphasis on ensuring that the same
stochastic structures are present as in the intended model be-
haviors.

Second, when it comes to the abstraction from identified
model behaviors to implementing a behavioral task, it will be
important to ensure a sufficiently high level of action fidelity.
First and foremost, this implies that the stochastic structure
and probabilistic relationships reflect those in the real world.
While previous research suggests that very realistic imple-
mentations of the model behaviors may not be critical (see
Araújo et al., 2007; Moroney et al., 1994; Stoffregen et al.,
2003), too abstract tasks might impede action fidelity, such
as if they fail to immerse participants in the task (i.e., lack of
experiential fidelity). Current behavioral tasks vary widely in
this respect, ranging from highly abstract tasks such as mul-
tiple price lists (Holt & Laury, 2002) to relatively vivid tasks,
such as a driving simulations making use of video clips (Vi-
enna risk-taking test traffic; Hergovich et al., 2007). Further
research is needed to examine the extent to which such prop-
erties are indeed necessary in order for a task to generalize
well to the intended model behavior.

Conclusion

There will be a continued need for behavioral tasks in psy-
chological assessment, including the study of risk-taking be-
haviors. For instance, in neuroimaging studies behavioral
measures are a crucial element to draw valid inferences on
the functional neuroanatomy of risk taking. In this arti-
cle, we reanalyzed five datasets and conducted two exper-
imental studies, aimed at improving the representativeness
of the BART. We were arguably successful in doing so with

a simple but important adaptation of one of the BART’s
most fundamental dimensions: the distribution of explosion
points. However, the associated increase in the task’s action
fidelity—one aspect of representativeness—did not improve
its convergent validity, nor its test–retest reliability.

Thus, as long as the model behaviors of current risk-taking
tasks do not sufficiently tap the psychological processes that
are relevant in real-life risk taking, there is little hope that
these tasks can easily be “repaired”, by more closely align-
ing the task performance with the performance in model be-
haviors. Therefore, we suggest that future research should
aim at developing new behavioral measures by adhering to
the principles of representative design at two levels: in terms
of actual task design, and potentially even more importantly,
in terms of an ecologically-guided selection of model behav-
iors.
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